This is one of the important concept where we will see how an end-to-end pipeline will work in AWS. We are going to see how to continuously monitor a common source like S3/Redshift from Lambda(using Boto3 code) and initiate a trigger to start some Glue job(spark code), and perform some action. Let's assume that, AWS Lambda should initiate a trigger to another AWS service Glue as soon as some file got uploaded in AWS S3 bucket, Lambda should pass this file information as well to Glue, so that Glue job will perform some transformation and upload that transformed data into AWS RDS(MySQL). Understanding above flow chart : Let's assume one of your client is uploading some files(say .csv/.json) in some AWS storage location, for example S3 As soon as this file got uploaded in S3, we need to initiate a TRIGGER in AWS Lambda using Boto3 code Once this trigger is initiated, another AWS service called GLUE(ETL Tool) will start a Pyspark job to receive this file from Lambda, perform so...